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1 Introduction 

The rough set theory, proposed by Pawlak (1982), is an extension of the classical set 
theory for modelling uncertainty or imprecise information. The research has recently 
roused great interest in theoretical and application fronts such as machine learning, 
pattern recognition, data analysis and so on.  

Knowledge reduction is one of the hot research topics of the rough set theory. Much 
study on this area had been reported and many useful results have been obtained even 
until now (Leuang et al., 2006; Xu and Zhang, 2006; 2007a; Zhang et al., 2001; Wu  
et al., 2005; Zhang et al., 2003). However, most of the work was based on consistent 
information systems and the main methodology has been developed under equivalence 
relations (indiscernibility relations). In practise, most information systems are not only 
inconsistent, but also based on dominance relations because of various factors. The 
ordering of the properties of attributes plays a crucial role in those systems. For this 
reason, Greco et al. (1998; 1999; 2001; 2002) and Dembczynski et al. (2003a; 2003b) 
proposed an extension rough sets theory, called the Dominance-Based Rough Sets 
Approach (DRSA), to take into account the ordering properties of attributes. This 
innovation is mainly based on the substitution of the indiscernibility relation by a 
dominance relation. In DRSA, condition attributes and classes are preference ordered. 
Many studies on DRSA have been made (Sai et al., 2001; Shao and Zhang, 2005; Xu and 
Zhang, 2006; 2007a; 2008). But simpler results of knowledge reductions are very poor in 
inconsistent ordered information systems until now. 

In this paper, the method operated for knowledge reductions is introduced in 
inconsistent ordered information systems. The dominance matrix and decision 
assignment matrix are introduced in information systems based on dominance relations. 
Furthermore, the algorithm of assignment reduction is obtained, from which we can 
provide a new approach to knowledge reductions in inconsistent systems based on 
dominance relations. Finally, an example illustrates the validity of this method, which 
shows that the method, is effective in complicated information systems. 

2 Rough sets and OIS 

The following paragraphs recall the necessary concepts and preliminaries required  
in the sequel of our work. A detailed description of the theory can be found in Zhang  
et al. (2001). 

An information system with decisions is an ordered quadruple I = (U, A ∪ D,  
F, G), where: 

U = {x1, x2," , xn} is a non-empty finite set of objects 

A ∪ D is a non-empty finite attributes set 

A = {a1, a2," , ap} denotes the set of condition attributes 

D = {d1, d2," , dq} denotes the set of decision attributes, A ∩ D = φ 

F = {fk|U → Vk, k ≤ p}, fk(x) is the value of ak on x ∈ U and Vk is the domain of ak,  
        ak ∈ A 

G = {gk′|U → Vk′, k′ ≤ q}, gk′(x) is the value of dk′ on x ∈ U and Vk′ is the domain of  
        dk′, dk′ ∈ D. 
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In an information system, if the domain of an attribute is ordered according to a 
decreasing or increasing preference, then the attribute is a criterion. 

Definition 2.1 (Zhang et al., 2001)  

An information system is called an Ordered Information System (OIS) if all the condition 
attributes are criterions. 

Assuming that the domain of a criterion a ∈ A is complete and pre-ordered by an 
outranking relation a, then x a y means that x is at least as good as y with respect to 
criterion a. We can also say that x dominates y. Without any loss of generality, we 
consider the condition and decision criterions having a numerical domain, that is, Va ⊆ R 
(R denotes the set of real numbers). 

We define x  y by f(x, a) ≥ f(y, a) according to increasing preference, where a ∈ A 
and x, y ∈ U. For a subset of attributes B ⊆ A, x  B y means that x a y for any a ∈ B. 
That is, x dominates y with respect to all the attributes in B. Furthermore, we denote  
x  B y by  In general, we indicate an OIS with a decision by I.BxR y≥  = (U, A ∪ D,  
F, G). Thus, the following definition can be obtained. 

Let I  = (U, A ∪ D, F, G) be an OIS with decisions; for B ⊆ A, denote: 

{( , ) ( ) ( ), };B i j l i l j lR x x U U f x f x a B= ∈ × ≥ ∀ ∈⏐  

{( , ) ( ) ( ), }.D i j m i m j mR x x U U g x g x d D= ∈ × ≥ ∀ ∈⏐  

BR  and DR  are called the dominance relations of information system I .  
If we denote: 

[ ] { ( , ) }

{ ( ) ( ), }

[ ] { ( , ) }

{ ( ) ( ),

i B j j i B

j l j l i l

i D j j i D

j m j m i m

x x U x x R

x U f x f x a B

x x U x x R

x U g x g x d D

= ∈ ∈

= ∈ ≥ ∀ ∈

= ∈ ∈

= ∈ ≥ ∀ ∈

⏐

⏐

⏐

⏐

;

},

 

then the following properties of a dominance relation are trivial. 

Proposition 2.1 (Zhang et al., 2001)  

Let AR  be a dominance relation. The following hold: 

• AR  is reflexive, transitive, but not symmetric, so it is not a equivalence relation 

• If B ⊆ A, then A BR R⊆  

• If B ⊆ A, then [ ]  [ ]i A i Bx x⊆

• If xj ∈ [ ]  then  and [ ]  ,i Ax [ ] [ ]j A i Ax x⊆ {[ ] [ ] }i A j A j i Ax x x x= ∪ ∈⏐

•  iff f(x[ ] [ ]j A i Ax x= i, a) = f(xj, a) (∀a ∈ A) 

•  constitute a covering of U. {[ ] }Ax x U= ∪ ∈⏐J� 

For any subset X of U and A of I , define: 
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( ) { [ ] };A AR X x U x X= ∈ ⊆⏐  

( ) { [ ] }.A AR X x U x X φ= ∈ ∩ ≠⏐  

( )AR X  and ( )AR x  are said to be the lower and upper approximations of X with respect 
to dominance relation .AR  The approximations also have some properties which are 
similar to those of the Pawlak approximation spaces. 

Definition 2.2 (Zhang et al., 2001)  

For an OIS with decisions I  = (U, A ∪ D, F, G), if ,A DR R⊆  then this information 
system is consistent, otherwise, this information system is inconsistent (Inconsistent 
Ordered Information System or IOIS). 

Example 2.1  

Let us consider an OIS in Table 1. 

Table 1 An ordered information system 

U a1 a2 a3 d 

x1 1 2 1 3 

x2 3 2 2 2 

x3 1 1 2 1 

x4 2 1 3 2 

x5 3 3 2 3 

x6 3 2 3 1 

From the table, we have: 

1 1 2 5 6 2 2 5 6

3 2 3 4 5 6 4 4 6

5 5 6 6

[ ] { , , , }; [ ] { , , };

[ ] { , , , , }; [ ] { , };

[ ] { }; [ ] { };

A A

A A

A A

x x x x x x x x x

x x x x x x x x x

x x x x

= =

= =

= =

 

and 

1 5 1 5

2 4 1 2 4 5

3 6 1 2 3 4 5 6

[ ] [ ] { , };

[ ] [ ] { , , , };

[ ] [ ] { , , , , , }.

d d

d d

d d

x x x x

x x x x x x

x x x x x x x x

= =

= =

= =

 

Obviously, by the above, we have ,A dR R⊆/  so the system in Table 1 is inconsistent. 

Let I  = (U, A ∪ D, F, G) be an IOIS and denote: 

1

( ) { [ ] , };

1
( ) .

B j j B

r

B B j
j

x D D x x U

R D
U

σ φ

η
=

= ∩ ≠ ∈

= ∑

⏐

⏐ ⏐
 

For an OIS, the following definitions will be proposed. 
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x

x

Definition 2.3 (Zhang et al., 2001)  

• If  for all x ∈ U, we say that B is an assignment consistent set of I( ) ( ),B Axσ σ= .  
If B is an assignment consistent set and no proper subset of B is an assignment 
consistent set, then B is called an assignment consistent reduction of I . 

• If  for all x ∈ U, we say that B is an approximation consistent set  
of I

( ) ( ),B Axη η=
. If B is an approximation consistent set and no proper subset of B is an 

approximation consistent set, then B is called an approximation consistent reduction 
of I . 

An assignment consistent set is a subset of attributes set that preserves the possible 
decisions of every object. An approximation consistent set preserves the upper 
approximation of every decision class. 

Proposition 2.2 (Zhang et al., 2001)  

Let I  = (U, A ∪ D, F, G) be an OIS, then B ⊆ A is an assignment reduction of I  if and 
only if B is an approximation reduction of I . 

For a simple description, the following information system with decisions are based 
on dominance relations, i.e., OIS. 

3 Knowledge reduction in IOIS 

3.1 Theories of knowledge reduction in IOIS 

Let I  = (U, A ∪ {d}, F, G) be an OIS and ,A dR R  be the dominance relations derived 
from condition attributes set A and decision attributes set {d}, respectively. For  
B ⊆ A, denote: 

1 2

1

/ {[ ] };

/ { , , , };

( ) { [ ] , };

1
( ) ,

B i B i

d r

B j j B

r

B B j
j

U R x x U

U R D D D

x D D x x U

R D
U

σ φ

η
=

= ∈

=

= ∩ ≠ ∈

= ∑

…

⏐

⏐

⏐ ⏐

 

where  [ ] { : ( , ) }.B Bx y U x y R= ∈ ∈
From the above, we can have the following propositions immediately. 

Proposition 3.1 

Let I  = (U, A ∪ {d}, F, G) be an IOIS: 

• ( ) {[ ] ( )}B j B j BR D x D σ= ∪ ∈⏐ x

U

B U

 

• If B ⊆ A, then  ( ) ( ),A Bx x xσ σ⊆ ∀ ∈

• If [ ]  then [ ] ,Bx y⊇ ( ) ( ), , .B Bx y x yσ σ⊇ ∀ ∈  
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Definition 3.1 

Let I  = (U, A ∪ {d}, F, G) be an IOIS: 

• If  for all x ∈ U, we say that B is an assignment consistent set of  
I

( ) ( ),B Axσ σ= x

x

5x

x x=
x

x

. If B is an assignment consistent set and no proper subset of B is an assignment 
consistent set, then B is called an assignment consistent reduction of I . 

• If  for all x ∈ U, we say that B is an approximation consistent  
set of I

( ) ( ),B Axη η=
. If B is an approximation consistent set and no proper subset of B is an 

approximation consistent set, then B is called an approximation consistent reduction 
of I . 

An assignment consistent set is a subset of an attributes set that preserves the  
possible decisions of every object. An approximation consistent set preserves the upper 
approximation of every decision class. 

Example 3.1  

Consider the IOIS in Example 2.1. 
For the IOIS in Example 2.1 (Table 1), we denote: 

1 1 5

2 2 4

3 3 6

[ ] [ ] ;

[ ] [ ] ;

[ ] [ ] .

d d

d d

d d

D x x

D x x

D x x

= =

= =

= =

 

Thus, we can acquire that: 

1 2 3

1 2 3

4 2 3

6 3

( ) ( ) ( ) ( )

{ , , };

( ) { , };

( ) { }.

A A A A

A

A

x x x

D D D

x D D

x D

σ σ σ σ

σ

σ

= = =

=

=

=

 

When B = {a2, a3}, it can be easily checked that B  for all x ∈ U. So 
 is true. Thus, B = {a

[ ] [ ]A

( ) ( )B Axσ σ= 2, a3} is an assignment consistent set of I . 
Furthermore, we can examine that {a2} and {a3} are not a consistent set of I . That is,  
B = {a2, a3} is an assignment consistent reduction of I .  

When B′ = {a1, a3}, we have: 

1 1 2 3 4 5 6 2 2 5 6

3 2 3 4 5 6 4 4 6

5 2 5 6 6 6

[ ] { , , , , , }; [ ] { , , };

[ ] { , , , , }; [ ] { , };

[ ] { , , }; [ ] { };

B B

B B

B B

x x x x x x x x x x x

x x x x x x x x x

x x x x x x

′ ′

′ ′

′ ′

= =

= =

= =

 

and 

1 2 3 4

1 2 3

4 2 3

6 3

( ) ( ) ( ) ( )

{ , , };

( ) { , };

( ) { }.

B B B B

B

B

x x x

D D D

x D D

x D

σ σ σ σ

σ

σ

′ ′ ′ ′

′

′

= = =

=

=

=
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x

x

For all x ∈ U, we have  and B′ = {a( ) ( )B Bxσ σ′ = 1, a3} is another assignment consistent 
set of I . Moreover, it can be easily calculated that a1 is not an assignment consistent set 
of I . Hence, B′ = {a1, a3} is another assignment reduction of I . Furthermore, it can be 
easily verified that {a1, a2} is not an assignment consistent set of I . 

Thus, there exist two assignment reductions of I  in the system of Table 1, which are 
{a1, a3} and {a2, a3}. 

Theorem 3.1  

Let I  = (U, A ∪ {d}, F, G) be an OIS, then B ⊆ A is an assignment consistent set of I  
if and only if B is an approximation consistent set of I . 

Proof 

Assume that B ⊆ A is an assignment consistent set of I , that is,  for all  
x ∈ U. By the definition, for ∀j ≥ r, we have: 

( ) ( )B Axσ σ=

( ) [ ] ( )

                  ( ) [ ]

                  ( ).

B j B j j B

j A A j

A j

x R D x D D x

D x x D

x R D

φ σ

σ φ

∈ ⇔ ∩ ≠ ⇔ ∈

⇔ ∈ ⇔ ∩ ≠

⇔ ∈

 

( ) ( ),B j A jR D R D=  that is, .B Aη η=  Hence, B is an approximation consistent set of I . 
Conversely, if B is an assignment consistent set of I , then ,B Aη η= which indicates: 

1 1

( ) ( ) .
r r

B j A j
j j

R D R D
= =

∑ ∑⏐ ⏐= ⏐ ⏐  

On the other hand, since ( ) ( )B j A jR D R D⊇  for ∀j ≥ r, ( ) ( )B j A jR D R D=  holds. Thus, 
for all x ∈ U, we have: 

( ) [ ] ( )

                  ( ) [ ]

                  ( ).

j B B j B j

A j A j

j A

D x x D x R D

x R D x D

D x

σ φ

φ

σ

∈ ⇔ ∩ ≠ ⇔ ∈

⇔ ∈ ⇔ ∩ ≠

⇔ ∈

 

Hence,  is true for all x ∈ U, which show that B is an assignment 
consistent set of I

( ) ( )B Axσ σ= x

σ σ σ∩ ≠ ] [ ] [ ]B B Bx y y∩ ≠

. 

Corollary 3.1 

Let I  = (U, A ∪ {d}, F, G) be an OIS, then B ⊆ A is an assignment reduction of I  if 
and only if B is an approximation reduction of I . 

Theorem 3.2 

Let I  = (U, A ∪ {d}, F, G) be an OIS, then B ⊆ A is an assignment consistent set of I  if 
and only if when  [  holds for x, y ∈ U. ( ) ( ) ( );A A Ax y y
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Proof 

Assume that when  B B  does not hold, implying 
that B  We have [ ] B  and  can be obtained by 
Proposition 3.1(3). On the other hand, since B is an assignment consistent set of I

( ) ( ) ( ),A A Ax y yσ σ σ∩ ≠ [ ] [ ] [ ]Bx y y∩ ≠
x y y∩ = x y⊇ y

y y
x

y x y y∩ ≠
B y [ ]B Bx y⊇

[ ] [ ] [ ] .B B [ ]B ( ) ( )B Bxσ σ⊇
, we 

have  which is in contradiction with  ( ) ( ),A Axσ σ⊇ ( ) ( ) ( ).A A Ax yσ σ σ∩ ≠
Conversely, we only prove  by Proposition 3.1(2). ( ) ( )B Axσ σ⊆
For all x, y ∈ U, if  implies  which means 

that  implies  that is, [ ]  implies 
 

( ) ( ) ( )A A Ax yσ σ σ∩ ≠ [ ] [ ] [ ] ,B B B

[ ] [ ] [ ]B Bx y y∩ = ( ) ( ) ( ),A A Ax yσ σ σ∩ =
( ) ( ).A Ax yσ σ⊇
On the other hand, suppose ( ),k BD xσ∈  that is, [ ] .B kx D φ∩ ≠  Assume that 

 then  and y ∈ D[ ] ,B ky x D∈ ∩ [ ]By x∈ k. By Proposition 1(4), we obtain that [ ]  
is true, which implies  Since  we have  which 
means 

[ ]B Bx y⊇
( ) ( ).A Axσ σ⊇ y [ ] ,Ay y∈ [ ] ,A ky y D∈ ∩

[ ] .A ky D φ∩ =  We observe ( ) ( ),k A AD yσ σ∈ ⊆ x  that is, ( ).k AD xσ∈  Thus, we 
conclude that  i.e., B is an assignment consistent set of I( ) ( ),B Axσ σ⊆ x

By

. 

Corollary 3.2  

Let I  = (U, A ∪ {d}, F, G) be an OIS, then B ⊆ A is an approximation consistent set of 
I  if and only if  holds for x, y ∈ U. ( ) ( ) ( );  [ ] [ ] [ ]A A A B Bx y y x yσ σ σ∩ ≠ ∩ ≠

3.2 Approach to knowledge reduction in IOIS 

This section provides an approach to assignment reduction in IOIS. Let us first give the 
following notes. 

Definition 3.2 

Let I  = (U, A ∪ {d}, F, G) be an IOIS. We denote: 

* {( , ) ( ) ( )}.i j A i A jD x x x xσ σ= ⊂⏐  

Let denote the value of ak by .
kaf  So we get: 

*

*

{ ( ) ( )}, ( , )
( , ) .

, (
k kk a i a j i j

i j

i j

a A f x f x x x D
D x x

, )A x x D

⎧ ∈ > ∈⎪= ⎨
∈/⎪⎩

⏐
 

Then, D(xi, xj) is said to be an assignment discernibility attributes set. M = (D(xi, xj), xi,  
xj ∈ U) is referred to as the assignment discernibility matrix of I . 

Theorem 3.3 

Let I  = (U, A ∪ {d}, F, G) be an IOIS and B ⊆ A, then B is an assignment consistent set 
if and only if B ∩ D(x, y) ≠ φ for all (x, y) ∈ D*. 
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y y

B

Proof 

Assume that B is an assignment consistent set of I . For any (x, y) ∈ D*, we can  
obtain  that is,  From Theorem 3.2, we have 

 Thus, there exist the following three cases between [ ]  and [ ]  
which are: 

( ) ( ),A Axσ σ⊂ ( ) ( ) ( ).A A Ax yσ σ σ∩ ≠
[ ] [ ] [ ] .B Bx y y∩ ≠ Bx ,By

1  [ ] [ ]B Bx y⊂

2 [ ] [ ]B Bx y φ∩ =  

3 both [ ]  and [ ]  [ ] [ ]B Bx y x∩ ⊂ B B

x y⊂

[ ] [ ] .B Bx y y∩ ⊂

We will prove that B ∩ D(x, y) ≠ φ always holds in every case: 

Case 1 If [ ] B  then there necessarily exists an element [ ] ,B [ ] ,Bz y∈  but  
[ ] .Bz x∉  From [ ] ,Bz x∉  we can certainly find an element ak ∈ B, such that 

ka( ) ( ).
kaf x f z>  On the other hand, the fact ( ) ( )

k ka af y f z≥  is true according to 
[ ] .Bz y∈  From the above, we can obtain ( ) ( ).

k ka af x f y>  Hence, we have  
ak ∈ D(x, y), i.e., B ∩ D(x, y) ≠ φ. 

Case 2 If [ ] [ ] ,B Bx y φ∩ =  then there necessarily exists an element ak ∈ B, such  
that 

k
( ) ( ),

ka af x f y>  i.e., B ∩ D(x, y) ≠ φ. Otherwise, if for all al ∈ B, 
( ) ( )

l la af x f y≥  always holds, then we observe  This is a contradiction. [ ] .By x∈

Case 3 The proof is similar to Case 1, because we can also certainly find an element 
[ ] ,Bz y∈  but [ ]Bz x∉  in the case. 

Thus, we can conclude that B ∩ D(x, y) ≠ φ for all (x, y) ∈ D*. 
Conversely, if every (x, y) ∈ D* satisfies B ∩ D(x, y) ≠ φ, then we can select an  

ak ∈ B, such that ak ∈ D(x, y). That is, 
k ka a( ) ( )f x f y>

x y y∩ ≠
y y

σ σ σ∩ ≠ [ ] [ ] [ ]x y y∩ ≠

 so  Since  is  
true, we can obtain [ B  On the other hand, since (x, y) ∈ D

[ ] .By x∉ [ ]By y∈
] [ ] [ ] .B B

*, we  
have  which implies  Hence, we find that  
when  B B B  holds. Thus, we know that B is an 
assignment consistent set of I

( ) ( ),A Axσ σ⊂ ( ) ( ) ( ).A A Ax yσ σ σ∩ ≠
( ) ( ) ( ),A A Ax y y

 in terms of Theorem 3.2. 

Definition 3.3  

Let I  = (U, A ∪ {d}, F, G) be an IOIS and let M = (D(xi, xj), xi, xj ∈ U) be the 
assignment discernibility matrix of I . Denote: 

F = ∧{∨{ak|ak ∈ D(xi, xj)}, xi, xj ∈ U} 

   = ∧{∨{ak|ak ∈ D(xi, xj)}, xi, xj ∈ D*}, 

where F is called the assignment discernibility function. 

Theorem 3.4 

Let I  = (U, A ∪ {d}, F, G) be an IOIS. The minimal disjunctive normal form of the 
assignment discernibility function F is: 
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1 1

.
p q

s
k s

F a
= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∨ ∧  

Denote Bk = {as|s = 1, 2," ,qk}, then {Bk|k = 1,2," , p} is just a set of all the assignment 
reductions of I . 

Proof 

It follows directly from Theorem 4.1. 
Theorem 3.4 provides a practical approach to the assignment reduction of information 

systems with decisions based on dominance relations. Next, we will consider the IOIS in 
Table 1 by using this approach. 

Example 3.2 

Table 2 is the assignment discernibility matrix of the IOIS in Example 2.1. 

Table 2 The assignment discernibility matrix in Example 2.1 

xi, xj x1 x2 x3 x4 x5 x6

x1 A A A A A A 

x2 A A A A A A 

x3 A A A A A A 

x4 a1, a3 a3 a1, a3 A a3 A 

x5 A A A A A A 

x6 a1, a3 a3 A a1, a2 a3 A 

Consequently, we have: 

F = (a1 ∨ a2 ∨ a3) ∧ (a1 ∨ a3) ∧ (a1 ∨ a2) ∧ a3 

    = (a1 ∧ a3) ∨ (a2 ∧ a3). 

Therefore, from Theorem 3.4, we get that {a1, a3} and {a2, a3} are all assignment 
reductions of the IOIS in Table 1, which accords with the result of Example 3.1. 

4 Algorithm of matrix computation 

4.1 Dominance matrices and assignment decision matrices 

In this section, the dominance matrices and assignment decision matrices are proposed 
and some properties are obtained. 

Definition 4.1 

Let I  = (U, A ∪ D, F, G) be an OIS, and denote: 
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×

1, [ ] ,
( )

0, otherwise.
j i B

B ij n n

x x
M m ×

⎧ ∈
= = ⎨

⎩
 

The matrix MB is called the dominance matrix of attributes set B ⊆ A. If |B| = l, we say 
that the order of MB is l. 

Definition 4.2 

Let I  = (U, A ∪ D, F, G) be an OIS and MB, MC be dominance matrices of attributes sets 
B, C ⊆ A. The intersection of MB and MC is defined by: 

( ) ( ) (min{ , }) .B C ij n n ij n n ij ij n nM M m m m m× ×′ ′∩ = ∩ =  

From above definition, we can have the following properties. 

Proposition 4.1 

Let MB, MC be the dominance matrices of attributes sets B, C ⊆ A; the following results 
always hold: 

• mii = 1 

• if MB, MC, then MB∪C = MB ∩ MC. 

Definition 4.3 

Let I  = (U, A ∪ D, F, G) be an OIS and denote: 

1, [ ] ( ),
( )

0, otherwise.
j D A i

D ij n n

x x
M r

σ
×

⎧ ∈
= = ⎨

⎩
 

The matrix MD is called the decision assignment matrix of I . 
From the above, we can see that the dominance relation of objects is decided  

by dominance matrices and the different decisions of objects is decided by the decision 
assignment matrix. 

Definition 4.4 

Let α = (a1, a2,
 … , an) and β = (b1, b2,

 … , bn) be two n dimension vectors. If ai ≤ bi,  
(i = 1, 2, … , n); we say vector α is less than vector β, denoted by α ≤ β. 

Definition 4.5 

Let MA = (α1, α2,
 … , αn)

T and MB = (β1, β2,
 … , βn)

T be two matrices, where αi and βi be 
vectors respectively. Ifαi ≤ βi, we say MA is less than MB, denoted by MA ≤ MB. 

By the definitions, dominance matrices have the following properties. 

Proposition 4.2 

Let I  = (U, A ∪ D, F, G) be an OIS and B ⊆ A. If MA and MB are the dominance 
matrices, then MA ≤ MB. 
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4.2 Algorithm of matrix computation for knowledge reductions 

In the section, we will give the method of matrix computation for knowledge reduction  
in OIS. 

Theorem 4.1 

Let I  = (U, A ∪ D, F, G) be an OIS and B ⊆ A. If MB ≤ MD does not hold, an element x 
in U exists such that  ( ) ( ).A Bx xσ σ≠

Proof 

Since MB ≤ MD does not hold, elements mij ∈ MB and rij ∈ MD exist such that mij > rij. But 
MB and MD is a 0-1 matrix. Hence, mij = 1 and rij = 0. We have B  by m[ ]j ix x∈ ij = 1. If we 
denote  then 00 [ ] ,j DD x= [ ] .i BD x φ∩ ≠  Thus, 0 ( ).B iD xσ∈  On the other hand, we can 
obtain 0 [ ] ( )j D A iD x σ= ∉ x

x

x x

 by rij = 0. 
The theorem is proved. 

Corollary 4.1 

Let I  = (U, A ∪ D, F, G) be an OIS and B ⊆ A. If it satisfies  for all  
x ∈ U, then M

( ) ( )A Bxσ σ≠
B ≤ MD holds. 

Theorem 4.2 

Let I  = (U, A ∪ D, F, G) be an OIS and B ⊆ A. MB ≤ MD if and only if  
always holds for all x ∈ U. 

( ) ( )A Bx xσ σ=

Proof 

“⇐” It can be obtained directly by Corollary 4.1. 

“⇒” Here, we only prove  because of for all x ∈ U 
and B ⊆ A.  

( ) ( ),B Axσ σ≤ ≤⊆ ( ) ( ),A Bxσ σ⊆

For an arbitrary 0 [ ] ( ),j D BD x σ= ∈ x  we have 0 [ ] .BD x φ∩ ≠  Assume 

0 B  m[ ] ,kx D x∈ ∩ x x∈
[ ]x x

ik = 1 can be obtained by  Another, because M[ ] .k B B ≤ MD, we get 
rik = 1. Thus, we can obtain [ ]  i.e., [ ] A( ),k D Ax xσ∈ k D φ∩ ≠

[ ] .k D j Dx x⊆
 by Definition 4.3. On 

the other hand, 0  so [ ]  Thus, [ ][ ] ( ),k j D Ax D x xσ∈ = ∈ [ ] ,j D Ax x φ∩ ≠  i.e., 

0 [ ] ( ).j D AD x σ= ∈ x  Hence,  ( ) ( ).B Ax xσ σ⊆
The theorem is proved. 

Corollary 4.2 

Let I  = (U, A ∪ D, F, G) be an OIS and B ⊆ A. B is an assignment reduction of I if and 
only if MB ≤ MD and MB′ ≤ MD does not hold for every proper subset B′ of B. 

We can obtain the following algorithm by Theorems 4.1 and 4.2. 
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.

i

Algorithm  

The algorithm of matrix computation for knowledge reduction in IOIS is described  
as follows: 

• Input – an IOIS I  = (U, A ∪ D, F, G), where U = {x1, x2,
 … , xn} and  

A = {a1, a2,
 … , ap}. 

• Output – assignment reductions of I  = (U, A ∪ D, F, G).  

Step 1 Simplify the system by combining the objects with the same values of  
every attribute. 

Step 2 Calculate the decision assignment matrix of I  : MD = (γ1, γ2,
 … , γn)

T.  

Step 3 For all al ∈ A, (1 ≤ l ≤ p), calculate the first-order dominance matrices: 

       (1) (1) (1) (1)
{ } { } 1 2( , , , )

l l

T
a a nM M τ τ τ= = …

Let i = 1 to n. 
If (1)0 ,iτ γ≠ ≤  then let (1)

iτ = 0. 
Denote the new matrix by  and go to the next step. (1)

{ }laFM

Step 4 Call matrix  to be the first-order assignment 
matrix, where  If 

(1) (1) (2) (1)
{ } 1 2( , , , )

l

T
aFM τ τ τ= … n

(1 ).la A l p∈ ≤ ≤ (1)
{ } 0,

laFM =  then obtain the first-order 
assignment reduction: {al}. Otherwise, go to the next step. 

Step 5 Calculate the intersection of all the first-order nonzero matrices which were 
obtained in Step 3 and call new matrices to be the second-order dominance 
matrices, denoted by  (2) (2) (1) (2) (1)

{ } { } { } { } { },  ( , ).
l s l s l l s sa a a a a a a aM M M M M≠ ≠

Go back to Step 3 and calculate all the second-order  
assignment reductions. 

Step 6 Obtain the higher-order assignment reductions by repeating Step 5. If  
the new matrices are zero matrices, then output all assignment reductions. 

From the algorithm above, we can know that the complication of times is O(|U2|2|A|). 

5 An example 

Example 

Let us consider an OIS in Table 3. 

Table 3 An ordered information system 
 

U a1 a2 a3 d 

x1 1 2 1 3 

x2 3 2 2 2 

x3 1 1 2 1 

x4 2 1 3 2 

x5 3 3 2 3 

x6 3 2 3 1 
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From the table, we can compute the dominance matrices and decision assignment 
matrices, which are: 

1{ }

1 1 1 1 1 1

0 1 0 0 1 1

1 1 1 1 1 1
;

0 1 0 1 1 1

0 1 0 0 1 1

0 1 0 0 1 1

aM

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

2{ }

1 1 0 0 1 1

1 1 0 0 1 1

1 1 1 1 1 1
;

1 1 1 1 1 1

0 0 0 0 1 0

1 1 0 0 1 1

aM

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

3{ }

1 1 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1
;

0 0 0 1 0 1

0 1 1 1 1 1

0 0 0 1 0 1

aM

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

{ }

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1
.

0 1 1 1 0 1

1 1 1 1 1 1

0 0 1 0 0 1

D dM M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

By comparing matrices 
1 2 3{ } { } { }a  and  we can find that the vectors of the 

first, second, third and fifth rows in matrices 
1{ }a  and 

2{ }a  are less then those in 
matrix { }  respectively. The system does not have the first-order assignment reduction. 
Thus, the first-order assignment matrices are as follows: 

,  ,  a aM M M { },dM
M M

,dM

1

(1)
{ }

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
;

0 1 0 1 1 1

0 0 0 0 0 0

0 1 0 0 1 1

aFM

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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2

(1)
{ }

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
;

1 1 1 1 1 1

0 0 0 0 0 0

1 1 0 0 1 1

aFM

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

3

(1)
{ }

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
.

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 1

aFM

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Furthermore, the second-order assignment matrices are:  

1 2 1 2

(2) (1) (1)
{ } { } { }

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
;

0 1 0 1 1 1

0 0 0 0 0 0

0 1 0 0 1 1

a a a aM FM FM

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ∩ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

1 3 1 3

(2) (1) (1)
{ } { } { }

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
;

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

a a a aM FM FM

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ∩ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

2 3 2 3

(2) (1) (1)
{ } { } { }

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
.

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

a a a aM FM FM

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ∩ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

We can see that 
1 3

 and their sixth row vectors are less then those of M
2 3

(2) (2)
{ } { }a a a aM M= {d}, 

respectively, by comparing 
1 2

 
1 3

 
2 3

 and M(2)
{ },a aM (2)

{ },a aM (2)
{ }a aM {d}. Hence, we can obtain all 

the second-order assignment reductions, which are {a1, a2}, {a2, a3}. 
Hence, we have: 
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1 3 2 3

(2) (2)
{ } { }

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
.

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

a a a aFM FM

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The algorithm is finished. 
Thus, all the assignment reductions are {a1, a3}, {a2, a3} in the system of the  

example above. 
From the example, we can find that the algorithm is valid, and operated simply, for 

systems with a great deal of objects and attributes. 

6 Conclusion 

It is well known that most information systems are based on dominance relations because 
of various factors in practise. Therefore, it is meaningful to study the knowledge 
reductions in IOIS. In this article, assignment reduction and approximation reduction 
were proposed for IOIS. The properties and relationships between assignment reduction 
and approximation reduction were discussed. The dominance matrix and decision 
assignment matrix were also proposed for information systems based on dominance 
relations. The algorithm of assignment reduction was introduced, from which we can 
provide an approach to knowledge reductions operated in inconsistent systems based on 
dominance relations. Finally, an example illustrated the validity of this given method, 
which shows that the method is effective in a complicated information system. 
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